Determination of the electric field in highly-irradiated silicon sensors using edge-TCT measurements
A method is presented which allows to obtain the position-dependent electric field and charge density by fits to velocity profiles from edge-TCT data from silicon strip-detectors. The validity and the limitations of the method are investigated by simulations of non-irradiated $n^+p$ pad sensors and by the analysis of edge-TCT data from non-irradiated $n^+p$ strip-detectors. The method is then used to determine the position dependent electric field and charge density in $n^+p$ strip detectors irradiated by reactor neutrons to fluences between 1 and $10 \times 10^{15}$ cm$^{-2}$ for forward-bias voltages between 25 V and up to 550 V and for reverse-bias voltages between 50 V and 800 V. In all cases the velocity profiles are well described. The electric fields and charge densities determined provide quantitative insights into the effects of radiation damage for silicon sensors by reactor neutrons.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

R. Klanner (add twitter)
G. Kramberger (add twitter)
I. Mandic (add twitter)
M. Mikuz (add twitter)
M. Milovanovic (edit)
J. Schwandt (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
09/11/19 06:04PM
10,939
2,097
Tweets
Nobody has tweeted about this paper.
Images
Related