Geometric phase gates in dissipative quantum dynamics
Trapped ions are among the most promising candidates for performing quantum information processing tasks. Recently, it was demonstrated how the properties of geometric phases can be used to implement an entangling two qubit phase gate with significantly reduced operation time while having a built-in resistance against certain types of errors. In this article, we investigate the influence of dissipation on the geometric phase in the Markov regime. We show that additional environmentally induced phases as well as a loss of coherence result from the non-unitary evolution and connect these effects to the associated dynamical and geometrical phases. This suggests a strategy to compensate the detrimental environmental influences and restore some of the properties of the ideal implementation. In particular, we present a way to construct forces for the geometric phase gate which compensate the dissipative effects and leave the produced phase as well as the final motional state identical to the isolated case. Finally, we examine the effects of dissipation on the fidelity and the robustness of a two qubit phase gate against certain error types.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Kai Müller (edit)
Kimmo Luoma (add twitter)
Walter T. Strunz (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/18/19 06:02PM
6,766
1,562
Tweets
Nobody has tweeted about this paper.
Images
Related