Development of the TIP-HOLE gas avalanche structure for nuclear physics/astrophysics applications with radioactive isotope beams: preliminary results
We discuss the operational principle and performance of new micro-pattern gaseous detectors based on the multi-layer Thick Gaseous Electron Multiplier (M-THGEM) concept coupled to a needle-like anode. The new gas avalanche structure aims at high-gain operation in nuclear physics and nuclear astrophysics applications with radioactive isotope beams. It is thereafter named TIP-HOLE gas amplifier, and consists of a THGEM or a two-layers M-THGEM mounted in a WELL configuration. The avalanche electrodes are collected by thin conductive needles (with up to a few ten um radius and a height of 100 um), located at the center of the hole and acting as point-like anode. The bottom area of the needle may be surrounded by a cylindrical cathode strip in order to increase the electron collection efficiency. The electric field lines from the drift region above the M-THGEM are focused into the holes, and then forced to converge on the needle tip. An extremely high field is reached at the top of the needle, creating a point-like avalanche process. Stable, high-gain operations in a wide range of pressures may be achieved at relatively low operational voltage, even in pure quencher gas at atmospheric pressure (e.g. pure isobutene). The TIP-HOLE structure may be produced by the innovative scalable additive manufacturing technology for large-area, multiple-layer printed circuit boards, recently developed by the UHV technology company (USA) and discussed for the first time in this work.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Jaspreet Singh Randhawa (add twitter)
Marco Cortesi (edit)
Wolfgang Mitting (add twitter)
Thomas Wierzbiski (add twitter)
Alejandro Gomes (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/16/19 06:00PM
3,534
1,337
Tweets
Nobody has tweeted about this paper.
Images
Related