Integrated polarizers based on graphene oxide in waveguides and ring resonators
Integrated waveguide polarizers and polarization-selective micro-ring resonators (MRRs) incorporated with graphene oxide (GO) films are experimentally demonstrated. CMOS-compatible doped silica waveguides and MRRs with both uniformly coated and patterned GO films are fabricated based on a large-area, transfer-free, layer-by-layer GO coating method that yields precise control of the film thickness. Photolithography and lift-off processes are used to achieve photolithographic patterning of GO films with precise control of the placement and coating length. Detailed measurements are performed to characterize the performance of the devices versus GO film thickness and coating length as a function of polarization, wavelength and power. A high polarization dependent loss of ~53.8 dB is achieved for the waveguide coated with 2-mm-long patterned GO films. It is found that intrinsic film material loss anisotropy dominates the performance for less than 20 layers whereas polarization dependent mode overlap dominates for thicker layers. For the MRRs, the GO coating length is reduced to 50 microns, yielding a ~ 8.3-dB polarization extinction ratio between TE and TM resonances. These results offer interesting physical insights and trends of the layered GO films and demonstrate the effectiveness of introducing GO films into photonic integrated devices to realize high-performance polarization selective components.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Jiayang Wu (add twitter)
Yunyi Yang (edit)
Yang Qu (add twitter)
Xingyuan Xu (add twitter)
Yao Liang (add twitter)
Sai T. Chu (edit)
Brent E. Little (add twitter)
Roberto Morandotti (add twitter)
Baohua Jia (edit)
David J. Moss (add twitter)
Category

Physics - Optics

Subcategories
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/16/19 06:03PM
6,384
1,906
Tweets
Nobody has tweeted about this paper.
Images
Related