Online Rental Housing Market Representation and the Digital Reproduction of Urban Inequality
As the rental housing market moves online, the Internet offers divergent possible futures: either the promise of more-equal access to information for previously marginalized homeseekers, or a reproduction of longstanding information inequalities. Biases in online listings' representativeness could impact different communities' access to housing search information, reinforcing traditional information segregation patterns through a digital divide. They could also circumscribe housing practitioners' and researchers' ability to draw broad market insights from listings to understand rental supply and affordability. This study examines millions of Craigslist rental listings across the US and finds that they spatially concentrate and over-represent whiter, wealthier, and better-educated communities. Other significant demographic differences exist in age, language, college enrollment, rent, poverty rate, and household size. Most cities' online housing markets are digitally segregated by race and class, and we discuss various implications for residential mobility, community legibility, gentrification, displacement, housing voucher utilization, and automated monitoring and analytics in the smart cities paradigm. While Craigslist contains valuable crowdsourced data to better understand affordability and available rental supply in real-time, it does not evenly represent all market segments. The Internet promises information democratization, and online listings can reduce housing search costs and increase choice sets. However, technology access/preferences and information channel segregation can concentrate such information-broadcasting benefits in already-advantaged communities, reproducing traditional inequalities and reinforcing residential sorting and segregation dynamics. Technology platforms construct new institutions with the power to shape spatial economies and human interactions.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Author

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Geoff Boeing (edit)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/15/19 06:06PM
9,147
3,452
Tweets
StatsPapers: Online Rental Housing Market Representation and the Digital Reproduction of Urban Inequality. https://t.co/mF8dLNAe2q
Images
Related