Phase transitions and Bose-Einstein condensation in alpha-nucleon matter
The equation of state and phase diagram of isospin-symmetric chemically equilibrated mixture of alpha particles and nucleons are studied in the mean-field approximation. The model takes into account the effects of Fermi and Bose statistics for nucleons and alphas, respectively. We use Skyrme-like parametrization of the mean-field potentials as functions of partial densities, which contain both attractive and repulsive terms. Parameters of these potentials are chosen by fitting known properties of pure nucleon- and pure alpha matter at zero temperature. The sensitivity of results to the choice of the alpha-nucleon attraction strength is investigated. The phase diagram of the alpha-nucleon mixture is studied with a special attention paid to the liquid-gas phase transitions and the Bose-Einstein condensation of alpha particles. We have found two first-order phase transitions, stable and metastable, which differ significantly by the fractions of alpha particles. It is shown that states with alpha condensate are metastable.
Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

L. M. Satarov (add twitter)
I. N. Mishustin (add twitter)
A. Motornenko (add twitter)
V. Vovchenko (add twitter)
M. I. Gorenstein (add twitter)
H. Stoecker (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
11/07/18 06:02PM
8,560
2,035
Tweets
Nobody has tweeted about this paper.
Images
Related