Rigidity of mapping class group actions on $S^1$
The mapping class group $\mathrm{Mod}_{g, 1}$ of a surface with one marked point can be identified with an index two subgroup of $\mathrm{Aut}(\pi_1 \Sigma_g)$. For a surface of genus $g \geq 2$, we show that any action of $\mathrm{Mod}_{g, 1}$ on the circle is either semi-conjugate to its natural action on the Gromov boundary of $\pi_1 \Sigma_g$, or factors through a finite cyclic group. For $g \geq 3$, all finite actions are trivial. This answers a question of Farb.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Kathryn Mann (add twitter)
Maxime Wolff (add twitter)
Category

Mathematics - Geometric Topology

Subcategory
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
08/09/18 05:53PM
5,127
1,433
Tweets
MathPaper: Rigidity of mapping class group actions on $S^1$. https://t.co/1GD37CM9AN
Images
Related