Network Identification: A Passivity and Network Optimization Approach
The theory of network identification, namely identifying the interaction topology among a known number of agents, has been widely developed for linear agents over recent years. However, the theory for nonlinear agents remains less extensive. We use the notion maximal equilibrium-independent passivity (MEIP) and network optimization theory to present a network identification method for nonlinear agents.We do so by introducing a specially designed exogenous input, and exploiting the properties of networked MEIP systems. We then specialize on LTI agents, showing that the method gives a distributed cubic-time algorithm for network reconstruction in that case. We also discuss different methods of choosing the exogenous input, and provide an example on a neural network model.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Miel Sharf (add twitter)
Daniel Zelazo (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/19/18 12:43AM
8,038
2,179
Tweets
Nobody has tweeted about this paper.
Images
Related