Regularized Zero-Forcing Precoding Aided Adaptive Coding and Modulation for Large-Scale Antenna Array Based Air-to-Air Communications
We propose a regularized zero-forcing transmit precoding (RZF-TPC) aided and distance-based adaptive coding and modulation (ACM) scheme to support aeronautical communication applications, by exploiting the high spectral efficiency of large-scale antenna arrays and link adaption. Our RZF-TPC aided and distance-based ACM scheme switches its mode according to the distance between the communicating aircraft. We derive the closed-form asymptotic signal-to-interference-plus-noise ratio (SINR) expression of the RZF-TPC for the aeronautical channel, which is Rician, relying on a non-centered channel matrix that is dominated by the deterministic line-of-sight component. The effects of both realistic channel estimation errors and of the co-channel interference are considered in the derivation of this approximate closed-form SINR formula. Furthermore, we derive the analytical expression of the optimal regularization parameter that minimizes the mean square detection error. The achievable throughput expression based on our asymptotic approximate SINR formula is then utilized as the design metric for the proposed RZF-TPC aided and distance-based ACM scheme. Monte-Carlo simulation results are presented for validating our theoretical analysis as well as for investigating the impact of the key system parameters. The simulation results closely match the theoretical results. In the specific example that two communicating aircraft fly at a typical cruising speed of 920 km/h, heading in opposite direction over the distance up to 740 km taking a period of about 24 minutes, the RZF-TPC aided and distance-based ACM is capable of transmitting a total of 77 Gigabyte of data with the aid of 64 transmit antennas and 4 receive antennas, which is significantly higher than that of our previous eigen-beamforming transmit precoding aided and distance-based ACM benchmark.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Jiankang Zhang (add twitter)
Sheng Chen (add twitter)
Robert G. Maunder (add twitter)
Rong Zhang (add twitter)
Lajos Hanzo (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/19/18 12:45AM
12,478
2,606
Tweets
Nobody has tweeted about this paper.
Images
Related