A PTAS for $\ell_p$-Low Rank Approximation
A number of recent works have studied algorithms for entrywise $\ell_p$-low rank approximation, namely algorithms which given an $n \times d$ matrix $A$ (with $n \geq d$), output a rank-$k$ matrix $B$ minimizing $\|A-B\|_p^p=\sum_{i,j} |A_{i,j} - B_{i,j}|^p$. We show the following: On the algorithmic side, for $p \in (0,2)$, we give the first $n^{\text{poly}(k/\epsilon)}$ time $(1+\epsilon)$-approximation algorithm. For $p = 0$, there are various problem formulations, a common one being the binary setting for which $A\in\{0,1\}^{n\times d}$ and $B = U \cdot V$, where $U\in\{0,1\}^{n \times k}$ and $V\in\{0,1\}^{k \times d}$. There are also various notions of multiplication $U \cdot V$, such as a matrix product over the reals, over a finite field, or over a Boolean semiring. We give the first PTAS for what we call the Generalized Binary $\ell_0$-Rank-$k$ Approximation problem, for which these variants are special cases. Our algorithm runs in time $(1/\epsilon)^{2^{O(k)}/\epsilon^{2}} \cdot nd \cdot \log^{2^k} d$. For the specific case of finite fields of constant size, we obtain an alternate algorithm with time $n \cdot d^{\text{poly}(k/\epsilon)}$. On the hardness front, for $p \in (1,2)$, we show under the Small Set Expansion Hypothesis and Exponential Time Hypothesis (ETH), there is no constant factor approximation algorithm running in time $2^{k^{\delta}}$ for a constant $\delta > 0$, showing an exponential dependence on $k$ is necessary. For $p = 0$, we observe that there is no approximation algorithm for the Generalized Binary $\ell_0$-Rank-$k$ Approximation problem running in time $2^{2^{\delta k}}$ for a constant $\delta > 0$. We also show for finite fields of constant size, under the ETH, that any fixed constant factor approximation algorithm requires $2^{k^{\delta}}$ time for a constant $\delta > 0$.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Frank Ban (add twitter)
Vijay Bhattiprolu (add twitter)
Karl Bringmann (add twitter)
Pavel Kolev (add twitter)
Euiwoong Lee (add twitter)
David P. Woodruff (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/17/18 09:09PM
36,364
5,031
Tweets
Nobody has tweeted about this paper.
Images
Related