Transfer Learning for High-Precision Trajectory Tracking Through $\mathcal{L}_1$ Adaptive Feedback and Iterative Learning
Robust and adaptive control strategies are needed when robots or automated systems are introduced to unknown and dynamic environments where they are required to cope with disturbances, unmodeled dynamics, and parametric uncertainties. In this paper, we demonstrate the capabilities of a combined $\mathcal{L}_1$ adaptive control and iterative learning control (ILC) framework to achieve high-precision trajectory tracking in the presence of unknown and changing disturbances. The $\mathcal{L}_1$ adaptive controller makes the system behave close to a reference model; however, it does not guarantee that perfect trajectory tracking is achieved, while ILC improves trajectory tracking performance based on previous iterations. The combined framework in this paper uses $\mathcal{L}_1$ adaptive control as an underlying controller that achieves a robust and repeatable behavior, while the ILC acts as a high-level adaptation scheme that mainly compensates for systematic tracking errors. We illustrate that this framework enables transfer learning between dynamically different systems, where learned experience of one system can be shown to be beneficial for another different system. Experimental results with two different quadrotors show the superior performance of the combined $\mathcal{L}_1$-ILC framework compared with approaches using ILC with an underlying proportional-derivative controller or proportional-integral-derivative controller. Results highlight that our $\mathcal{L}_1$-ILC framework can achieve high-precision trajectory tracking when unknown and changing disturbances are present and can achieve transfer of learned experience between dynamically different systems. Moreover, our approach is able to achieve precise trajectory tracking in the first attempt when the initial input is generated based on the reference model of the adaptive controller.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Karime Pereida (add twitter)
Dave Kooijman (add twitter)
Rikky R. P. R. Duivenvoorden (add twitter)
Angela P. Schoellig (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/16/18 07:45PM
12,427
2,582
Tweets
Nobody has tweeted about this paper.
Images
Related