Who did What at Where and When: Simultaneous Multi-Person Tracking and Activity Recognition
We present a bootstrapping framework to simultaneously improve multi-person tracking and activity recognition at individual, interaction and social group activity levels. The inference consists of identifying trajectories of all pedestrian actors, individual activities, pairwise interactions, and collective activities, given the observed pedestrian detections. Our method uses a graphical model to represent and solve the joint tracking and recognition problems via multi-stages: (1) activity-aware tracking, (2) joint interaction recognition and occlusion recovery, and (3) collective activity recognition. We solve the where and when problem with visual tracking, as well as the who and what problem with recognition. High-order correlations among the visible and occluded individuals, pairwise interactions, groups, and activities are then solved using a hypergraph formulation within the Bayesian framework. Experiments on several benchmarks show the advantages of our approach over state-of-art methods.
Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Wenbo Li (add twitter)
Ming-Ching Chang (add twitter)
Siwei Lyu (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
07/03/18 06:23PM
9,556
2,604
Tweets
ComputerPapers: Who did What at Where and When: Simultaneous Multi-Person Tracking and Activity Recognition. https://t.co/Gh4zRcnFN3
Images
Related