Deep Reinforcement Learning for Surgical Gesture Segmentation and Classification
Recognition of surgical gesture is crucial for surgical skill assessment and efficient surgery training. Prior works on this task are based on either variant graphical models such as HMMs and CRFs, or deep learning models such as Recurrent Neural Networks and Temporal Convolutional Networks. Most of the current approaches usually suffer from over-segmentation and therefore low segment-level edit scores. In contrast, we present an essentially different methodology by modeling the task as a sequential decision-making process. An intelligent agent is trained using reinforcement learning with hierarchical features from a deep model. Temporal consistency is integrated into our action design and reward mechanism to reduce over-segmentation errors. Experiments on JIGSAWS dataset demonstrate that the proposed method performs better than state-of-the-art methods in terms of the edit score and on par in frame-wise accuracy. Our code will be released later.
NurtureToken New!

Token crowdsale for this paper ends in

Buy Nurture Tokens

Authors

Are you an author of this paper? Check the Twitter handle we have for you is correct.

Daochang Liu (add twitter)
Tingting Jiang (add twitter)
Ask The Authors

Ask the authors of this paper a question or leave a comment.

Read it. Rate it.
#1. Which part of the paper did you read?

#2. The paper contains new data or analyses that is openly accessible?
#3. The conclusion is supported by the data and analyses?
#4. The conclusion is of scientific interest?
#5. The result is likely to lead to future research?

Github
User:
None (add)
Repo:
None (add)
Stargazers:
0
Forks:
0
Open Issues:
0
Network:
0
Subscribers:
0
Language:
None
Youtube
Link:
None (add)
Views:
0
Likes:
0
Dislikes:
0
Favorites:
0
Comments:
0
Other
Sample Sizes (N=):
Inserted:
Words Total:
Words Unique:
Source:
Abstract:
None
06/23/18 04:21PM
3,636
1,439
Tweets
Nobody has tweeted about this paper.
Images
Related